

Available online at www.sciencedirect.com

Journal of Power Sources 159 (2006) 49-54

www.elsevier.com/locate/jpowsour

Short communication

Deposition of ZrO₂ film by liquid phase deposition

Jain-Ming Lin, Ming-chi Hsu, Kuan-Zong Fung*

Department of Materials Science and Engineering, National Cheng Kung University, Tinan 70101, Taiwan

Available online 11 July 2006

Abstract

In this study, undoped ZrO_2 thin films were deposited on single-crystal silicon substrates using liquid phase deposition. The undoped films were formed by hydrolysis of zirconium sulfate ($Zr(SO_4)_2 \cdot 4H_2O$) in the presence of H_2O . A continuous oxide film was obtained by controlling adequate (NH_4)₂ S_2O_8 concentration. The deposited films were characterized by SEM, FT-IR, XRD and DTA. Typically, the films showed excellent adhesion to the substrate with uniform particle diameter about 150 nm. The thicknesses of ZrO_2 film were about 200 nm after 10 h deposition at 30 °C. These films shows single tetragonal phase after heat treated at 600 °C. High annealing temperature (e.g. 750 °C) may result in the phase transformation of (t)- ZrO_2 into (m)- ZrO_2 .

© 2006 Elsevier B.V. All rights reserved.

Keywords: Thin film; ZrO₂; Liquid phase deposition

1. Introduction

Due to the excellent thermal, mechanical stability, and electrical properties of zirconia, thin film processing of zirconia plays an important role for optical, dielectric, corrosion-resistant coatings, and sensor applications. Moreover, the application of ZrO₂ film has been focused on high-temperature electrochemical devices, such as solid electrolyte in solid oxide fuel cells (SOFCs). In the solid electrochemical applications using YSZ thin film, the process of tape casting or colloidal deposition combined with high temperature sintering ($\sim 1400 \,^{\circ}$ C) is fairly common. When the YSZ thin film is obtained from the sintering of fine powder, the reaction with the substrate is inevitable. Such a reaction may degrade the performance of the electrochemical devices. Thus, the synthesis of a dense YSZ thin film at low temperature is very much desirable. For instance, when a thin film of YSZ is able to deposit on the substrate of LSM cathode substrate for SOFC applications, the formation of LaZrO₃ can be avoided.

Two kinds of low-temperature wet-chemical methods, the self-assembled monolayer (SAM) technique [1–5] and the liquid-phase deposition (LPD) [6–9], have been recently developed for direct deposition of ZrO_2 thin films using aqueous solutions. Agarwal et al. [1] first studied the deposition of ZrO_2

0378-7753/\$ – see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2006.04.116

thin film on a SAM surface using hydrolysis of zirconium sulfate ($Zr(SO_4)_2 \cdot 4H_2O$) in HCl (pH < 1) solution at 70 °C. The dense and well-adhered ZrO_2 films with tetragonal phase could be obtained as the film calcined at 500 °C for 2 h. Polli et al. [5] also prepared nanocrystalline zirconia film via SAM method from an aqueous dispersion without visible bulk precipitation. In SAM process, SAM polymer is deposited by immersing the substrate in organic solution of the hydrocarbon, X–(CH₂)_n–Z, where X denotes the "surface group," chosen sulfonate (–SO₃H). The sulfonate group is very effective in initiating and sustaining the formation of oxide thin films. Therefore, the thickness of oxide film may be restricted by sulfonate group surface condition (e.g. uniformity, and adhesion).

The LPD [6–9], on the other hand, is a very simple and inexpensive method without the need of special equipment such as vacuum system. A soluble hydride hexafluorozirconate (H₂ZrF₆) easily hydrolyzes in an aqueous solution by the release of fluorine ions, and subsequently reacts with boric acid. Hence, the hydrolysis reactions proceed and the ZrO₂ deposits forms on the substrate. However, it is difficult to remove the residual fluorine in the as-prepared thin film. To obtain ZrO₂ film by LPD method, the starting reagent other than H₂ZrF₆ is needed. Therefore, the main objective of this work is to find a novel method to obtain ZrO₂ thin film at temperature lower than 1000 °C. The starting materials used were zirconium sulfate (Zr(SO₄)₂·4H₂O), and ammonium persulfate ((NH₄)₂S₂O₈). The effect of persulfate concentration was investigated. Such a low-temperature thin film process will be beneficial to the

^{*} Corresponding author. Tel.: +886 6 275 7575; fax: +886 6 238 0208. *E-mail address:* kzfung@mail.ncku.edu.tw (K.-Z. Fung).

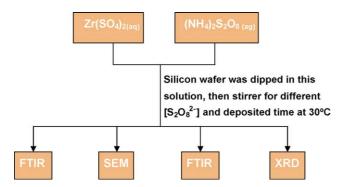


Fig. 1. Schematic flowchart for the solution preparation and film deposition.

formation of thin zirconia electrolyte in order to eliminate the reaction between cathode and electrolyte.

2. Experimental procedure

2.1. Films preparation

The experimental flowchart is shown in Fig. 1. Zirconium sulfate (Zr(SO₄)₂·4H₂O, 98+%, Alfa Aesor), and ammonium persulfate ((NH₄)₂S₂O₈, 98%, Riedel-de Haën) were first dissolved in deionized water at 30 $^{\circ}$ C. A mixture of Zr(SO₄)₂·4H₂O and $(NH_4)_2S_2O_8$ with $Zr^{4+}/S_2O_8^{2-}$ ratio varying from 0.2 to 1 was used as the starting solution. After the mixture was stirred for 5 min, a homogenous clean solution was obtained. The substrate of $2 \text{ cm} \times 2 \text{ cm}$ silicon wafer was cleaned sequentially in organic solvents (acetone and isopropyl alcohol) and oxidizing Piranha solution (mixture of 70% H₂SO₄:30% H₂O₂) at 80 °C. Then, the cleaned substrates were immersed into the prepared solution at 30 °C on a stirring plate to deposit a thin film. After immersion for 1, 3, 5, 10, 15, and 20 h, the substrates were rinsed three times in deionized water, and cleaned ultrasonically for 30 min. Some films were heated at to 500, 600, 650, 700, and 750 °C a heating rate of 5 °C min⁻¹ in air, respectively.

2.2. Characterization of deposition film

The morphology and thickness of the ZrO_2 film was examined by scanning electron microscope (SEM, Hitachi S4100). The crystal structure of thin films were characterized by using X-ray diffraction (XRD, Rigaku ATX-E). XRD was performed using an X-ray diffractometer with Cu K α radiation and Ni filter operated at 30 KV, 20 mA and a scanning rate of 1° min⁻¹.

Differential thermal and themogravimetric analyses (DTA/TGA) were conducted on a powder sample at a heating rate of $5 \,^{\circ}\text{C}\,\text{min}^{-1}$ in air with Al₂O₃ powder as a reference.

The precipitated powder in solution was filtered and analyzed by Fourier transform infrared (FT-IR, Perkin-Elmer spectrum one) spectroscopy with KBr as reference.

3. Results and discussion

3.1. The film deposition mechanism

In previous study [10], the aqueous Zr(SO₄)₂·4H₂O solution was a metastable supersaturated solution. The precipitation of zirconium compound occurred spontaneously. The precipitation rate increased with decreasing Zr(SO₄)₂·4H₂O aqueous concentration. In present process, $S_2O_8^{2-}$ was added into this supersaturated solution in order to suppress the formation of zirconium precipitates from homogenous nucleation in solution. Consequently, the initiating film deposited on the functionalized silicon surface via heterogeneous nucleation. The SEM micrographs of deposited oxide films from different $[S_2O_8^{2-}]$ are shown in Fig. 2. The SEM micrographs of the same films heat-treated at 750 °C for 3 h are also shown in Fig. 3. When $[S_2O_8^{2-}]$ was as low as 0.005 M, numerous large particles (diameter = 150 nm) were clearly observed. It suggests that the precipitation of $7ZrO_2 \cdot 5SO_3 \cdot 30H_2O_{(s)}$ particles in dilute $[S_2O_8^{2-}]$ was faster than high $[S_2O_8^{2-}]$. The 7ZrO₂·5SO₃·30H₂O_(s) particles were easily deposited on substrate, and grown into large particles. On the contrary, at $Zr(SO_4)_2 \cdot 4H_2O$ aqueous solution with high $[S_2O_8^{2-}]$, the small 7ZrO₂·5SO₃·30H₂O_(s) particles nucleated more homogenously and formed small particles. The small particles were not easily to grow into large particles. Among the large particles, the continuous and dense as-deposited film was formed. From these results we may suggest that the $S_2O_8^{2-}$ ions would effectively suppress the formation of zirconium precipitation, and improve the initiating film growing via heterogeneous nucleation on silicon wafer.

The following chemical reactions [11] show that the dissolution of zirconium sulfate in water and the formation of supersaturated solution. At least two processes occur simultaneously in these solutions: the formation of sulfate complexes (1) and hydrolysis (2):

$$7Zr(SO_4)_2 + 2H_2O \rightarrow 7ZrOSO_4 \cdot 5SO_3 + 2H_2SO_4$$
(1)

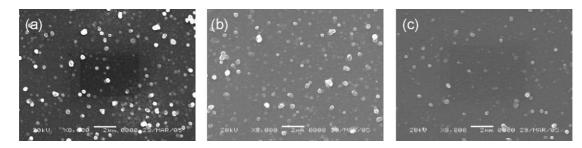


Fig. 2. The SEM image of as-deposited ZrO_2 films prepared from different [$S_2O_8^{2-}$] concentration: (a) 0.005 M, (b) 0.015 M, and (c) 0.025 M. The deposition time was 3 h.

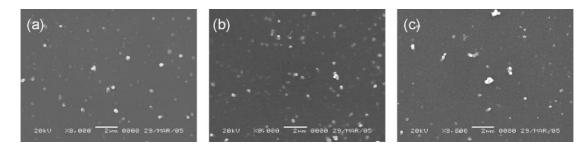


Fig. 3. The SEM image of ZrO_2 films prepared from different [$S_2O_8^{2-}$] concentration: (a) 0.005 M, (b) 0.015 M, and (c) 0.025 M after 2 h annealing at 750 °C in air. The deposition time was 3 h.

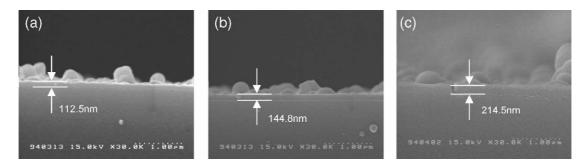


Fig. 4. The SEM image of zirconia thin film showing different thickness under various deposition time: (a) 3 h, (b) 5 h, and (c) 20 h when $0.005 \text{ M Zr}(SO_4)_{2(aq)}$ and $0.015 \text{ M }(NH_4)_2S_2O_{8(aq)}$ were used.

 $7ZrSO_4 \cdot 5SO_3 + 37H_2O$ $\rightarrow 7ZrO_2 \cdot 5SO_3 \cdot 30H_2O(\text{amorphous}) + 7H_2SO_4 \qquad (2)$

However, $S_2O_8^{2-}$ ion is a strong oxidizing agent. When $(NH_4)_2S_2O_8$ dissolved in water, the following two reactions occur:

$$2H_2O \rightarrow O_2 + 4e^- + 4H^+$$
 (3)

$$2S_2O_8^{2-} + 4e^- \to 4SO_4^{2-} \tag{4}$$

Reaction (3) causes the release of O_2 from water; reaction (4) is the reduction of $S_2O_8{}^{2-}$ into $SO_4{}^{2-}$. Reactions (3) and (4) may be used to control [H₂SO₄] in the precursor solution. Subsequently, the formation of $7ZrO_2 \cdot 5SO_3 \cdot 30H_2O_{(s)}$ may be effectively controlled based on reaction (2). Finally, a continuous film may form through heterogeneous nucleation on the silicon surface.

3.2. The film thickness

The cross-sectional SEM image of the deposited thin films before and after annealing at $750 \,^{\circ}$ C are shown in Figs. 4 and 5. The thickness increased with deposition time. The growth of ZrO₂ seems to follow a nucleation process.

Especially, the oxide film after 750 °C annealing showed columnar morphology (Fig. 5) Cross-sectional observation also suggested that the thickness of the deposited film, decreased from 144.8 nm (Fig. 4b) to 123.2 nm after annealing (Fig. 5b), representing a shrinkage of about 15%. This film shrinkage may result from the decomposition of unstable components such as H₂O, hydroxyl groups, amino group, and oxysulfide as detected by FT-IR.

The film thickness measured by using scanning electron microscope was plotted as a function of the deposition time. A non-linear dependence of ZrO_2 film thickness against deposition time for different $[Zr^{2+}]/[S_2O_8^{2-}]$ ratio is shown in Fig. 6. Subsequently, different (NH₄)₂S₂O₈ concentrations, namely 0.005,

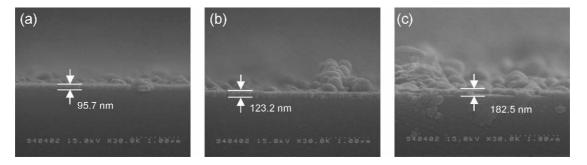


Fig. 5. SEM image of zirconia thin film after 750 °C heat-treatment showing different thickness under various deposition time (a) 3 h, (b) 5 h, and (c) 20 h when $0.005 \text{ M } \text{Zr}(\text{SO}_4)_{2(aq)}$ and $0.015 \text{ M} (\text{NH}_4)_2 \text{S}_2 \text{O}_{8(aq)}$ were used.

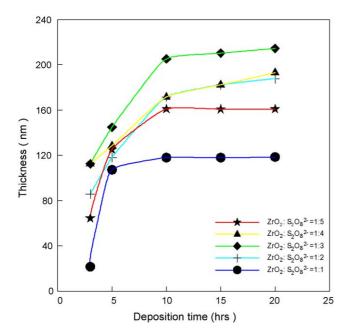


Fig. 6. Thickness of ZrO_2 plotted as a function of deposition time using various $[Zr^{2+}]/[S_2O_8^{2-}]$ ratio.

0.01, 0.015, 0.02, and 0.025 M were added, and the deposition time extended to 20 h. All curves started with an oblique line, the ZrO₂ thin film thickness increased with increasing deposition time. After 10 h, the thickness of ZrO₂ was levelled. This result suggests that the chemical reaction in solution already reached dynamic equilibrium. When $[Zr^{4+}]/[S_2O_8^{2-}]$ was 0.005/0.015, the ZrO₂ film thickness reached 174.6 nm during 10 h deposition. The growth rate of ZrO₂ film was estimated to be about 11.2 nm h⁻¹. Fig. 7 shows the ZrO₂ film grow rate (between 3 and 10 h) versus $S_2O_8^{2-}$ ion concentration. From this figure it was clear to reveal $S_2O_8^{2-}$ being an inhibitor in the precur-

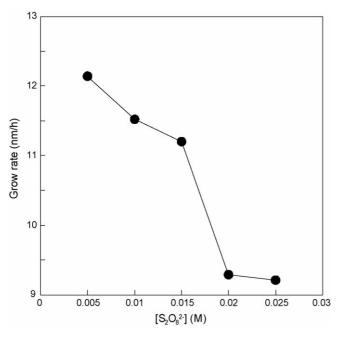


Fig. 7. Growth rate of ZrO_2 film vs. different $S_2O_8^{2-}$ concentration.

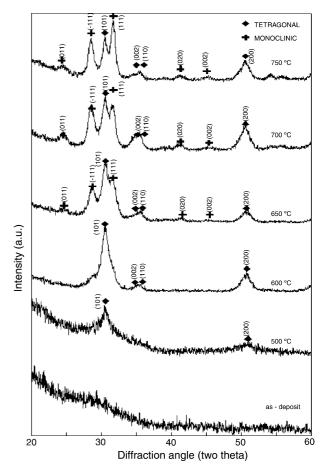


Fig. 8. The XRD profiles taken from deposited films after heat-treated at various temperatures.

sor solution. The growth rate of film decreased with increasing $[S_2O_8^{2-}]$. Specially, when $[S_2O_8^{2-}]$ reached 0.02 M, the growth rate of ZrO₂ film was down to 9.29 nm h⁻¹ because higher $[S_2O_8^{2-}]$ tends to shift reaction (2) toward the left hand side.

3.3. XRD analysis

Fig. 8 shows the XRD profiles for the as-deposited thin film and those after annealed at different temperatures for 2 h in air. The as-deposited film was amorphous, and no obvious diffraction peaks were detected. After annealing at 600 °C, diffraction peaks appearing at 30.5° , 34.8° , 35.3° , and 50.7° correspond to $(1\ 0\ 1)$, $(0\ 0\ 2)$, $(1\ 1\ 0)$, and $(2\ 0\ 0)$ plane of tetragonal phase ZrO₂ (t-ZrO₂). After the film was annealed at 650° C, a new phase, monoclinic ZrO₂ (m-ZrO₂), was observed, accompanying the decrease in intensity of $(1\ 0\ 1)$ diffraction of t-ZrO₂.

This phase transformation has also been observed in ZrO_2 films grown through other chemical solution routes [1-4,9,12-14]. The formation of metastable t- ZrO_2 phase, versus the thermodynamically stable monoclinic phase at such low temperatures has been attributed to the fine crystallite size [15] of ZrO_2 from the amorphous phase. The small crystallite tends to enhance the stability of t- ZrO_2 , due to the volume change associated with the (t)- $ZrO_2 \rightarrow$ (m)- ZrO_2 transformation.

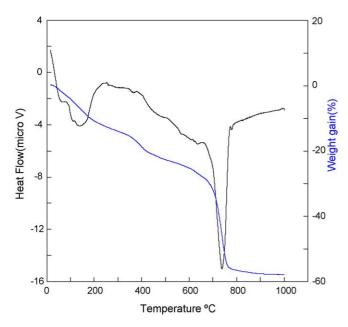


Fig. 9. TG-DTA curves for the as-deposited precipitate.

3.4. DTA and FT-IR analyses

The DTA curve (Fig. 9) of the precipitate formed after 20 h in the solution revealed three weight loss at 200, 500, and 750 °C. Under 200 °C, the weight loss was due to the evaporation of absorbed water. From FT-IR analysis, the weight loss about 9.2% at 500 °C is associated with NH₄⁺ and some OH group. The NH₄⁺ band was completely removed at 500 °C. The noticeable weight loss about 57% and exothermic reactions occurred at 750 °C. Such a reaction was attributed to the formation of ZrO₂ from the removal of metastable chemical band SO₂–OH group, and SO₃ group.

Fig. 10 shows the FT-IR spectrum of the precipitate collected after deposition. The 1640 cm^{-1} band is assigned to the

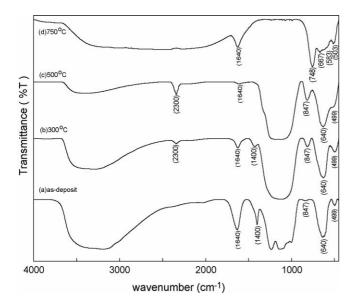


Fig. 10. FT-IR spectra for the as-prepared powder and those after annealing at different temperatures.

OH stretching. The 1236 cm^{-1} band is assigned to the NH₄⁺ group, that was completely removed at 500 °C. The appearance of SO₂–OH band at 2300 cm⁻¹ was a metastable chemical band, when the as-deposited sulfate complexes was annealed at 300, and 500 °C. The band at 1000–1239 cm⁻¹ assigned to SO₃–H₂O stretching, and SO₃ band resulted from SO₃–H₂O stretching above 200 °C. The absorbed water was removed above 200 °C. The amorphous Zr–O bands were located at 847, 640, 499 cm⁻¹. When this powder was annealed at 500 °C, the band at 847 cm⁻¹ intensified. This result suggests that ZrO₂ film started to crystallize, and the Zr–O band strength became strong at 847 cm⁻¹. Further heating at 750 °C removed the sulfur signal disappeared completely. The Zr–O band also transferred to crystalline ZrO₂ bands located at 748, 667, 583 and 503 cm⁻¹.

From the DTA and FT-IR results, the as-deposited film consisted of SO_3-H_2O , NH_4^+ , OH group, and amorphous Zr–O band. Around 200 °C, the absorbed water was evaporated, and the SO_3-H_2O decomposed to SO_3 and SO_2 –OH band. At 500 °C, the OH group and NH_4^+ band were completely removed, and the amorphous Zr–O band also transfer to crystalline ZrO₂ band. After 750 °C annealing, the SO₃ and SO₂–OH bands were removed completely. Above 750 °C annealing, the ZrO₂ thin film was obtained without the presence of impurities.

4. Conclusions

A novel method for preparing zirconium-complex aqueous solution using simple inorganic substances such as zirconium sulfate (Zr $(SO_4)_2 \cdot 4H_2O$), and ammonium persulfate $((NH_4)_2S_2O_8)$ was established:

- (1) Amorphous, homogenous, and well-adhered ZrO_2 was obtained from zirconium sulfate ($Zr(SO_4)_2 \cdot 4H_2O$), and ammonium persulfate ((NH_4)_2 S_2O_8) precursor solution.
- (2) After annealing, the metastable tetragonal phase ZrO₂ thin film was observed at 550 °C. Above 600 °C the coexistence tetragonal and monoclinic phase ZrO₂ was observed form XRD analysis.
- (3) During heating, the NH₄⁺ band was removed at 500 °C, and metastable band like SO₂–OH group, and SO₃–H₂O group was eliminated at 750 °C based on the results of FT-IR and DTA.

Acknowledgement

This work is financially supported by National Science Council (NSC) in Taiwan under the grant no. NSC 93-2120-M-006-004.

References

- [1] M. Agarwal, M.R. De Guire, A.H. Heuer, J. Am. Ceram. Soc. 80 (1997) 2967–2981.
- [2] Y.F. Gao, Y. Masuda, T. Yonezawa, K. Koumoto, J. Ceram. Soc. Jpn. 110 (2002) 379–385.
- [3] T.P. Niesen, M.R. De Guire, J. Bill, F. Aldinger, M. Rühle, A. Fischer, F. Jentoft, Schlögl, J. Mater. Res. 14 (1999) 2464–2475.
- [4] H. Shin, M. Agarwal, M.R. De Guire, Acta Mater. 46 (1998) 801-815.

- [5] A.D. Poli, T. Wagner, A. Fischer, G. Weinberg, F.C. Jentoft, R. Schlögl, M. Rühle, Thin Solid Films 379 (2000) 122–127.
- [6] T. Yao, T. Inui, A. Ariyoshi, J. Am. Ceram. Soc. 79 (1996) 3329-3330.
- [7] T. Yao, J. Mater. Res. 13 (1998) 1091–1098.
- [8] N. Ozawa, T. Yao, Trans. Mater. Res. Soc. Jpn. 28 (2003) 321-330.
- [9] G. Yanfeng, M. Yoshitake, H. Masuda, K. Kunihito, Chem. Mater. 16 (2004) 2615–2622.
- [10] M. Windholz, N.J. Rahway, (Eds.), The Merck Index, 10th ed., Mereck & Co., Inc., 1983, p. 1460.
- [11] E. Pietsch et al. (Eds.), Gmelin's Handbuch der Anorganischen Chemie, Verlag Chemie, 1926.
- [12] I. Zhitomirsky, L. Gal-Or, A. Kohn, H.W. Hennicke, J. Mater. Sci. 30 (1995) 5307–5311.
- [13] R. Chaim, I. Silberman, L. Gal-Or, J. Electrochem. Soc. 138 (1991) 1943–1947.
- [14] R. Chaim, G. Stark, L. Gal-Or, H.J. Bestgen, Mater. Sci. 29 (1994) 6241–6244.
- [15] R.C. Garvie, J. Phys. Chem. 69 (1965) 1238-1243.